Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342146

RESUMEN

Landfill leachate is produced in the process of sanitary landfilling, which contains significant amounts of dissolved organic matter (DOM) and heavy metal contaminants. Insights into the interactions between heavy metals and DOM in landfill leachate are beneficial for the understanding of heavy metal fates and optimization of landfill leachate treatment. In this work, the coherent structural changes of landfill leachate DOM during binding with various heavy metals were explored through the integration of molecular spectroscopic methods with chemometrics and statistic correlation analyses. The results indicate that protein substances, phenolic and discrete carboxyl groups in landfill leachate DOM were involved in the complexation with heavy metals, resulting in the formation of conjugated macromolecules/aggregates with high aromaticity and molecular weight/size. The fluorescent protein-like, fulvic acid-like, and humic-like fractions in DOM were engaged in the interaction, which were closely related to phenolic-like and carboxylic-like structure. Compared to membrane concentrates DOM, raw leachate DOM exhibited a higher binding affinity to heavy metals (especially for Cu2+, whilst the weakest was Cd2+). The integrated approach provides useful information in elucidating the binding processes of metals with landfill leachate DOM, including site heterogeneity, binding strength and functional group sequences.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Contaminantes Químicos del Agua , Materia Orgánica Disuelta , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos/métodos , Sustancias Húmicas/análisis , Metales Pesados/química , Espectrometría de Fluorescencia , Fenoles
2.
Ecotoxicol Environ Saf ; 230: 113147, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979307

RESUMEN

As the emerging contaminants, the environmental risks of drug-derived pollutants have attracted extensive attention. Citalopram (CTP) and mirtazapine (MTP) are commonly used as modern antidepressant drugs. Previous studies had proved that CTP and MTP entered the aquatic environment, but less reported the negative effects of the drugs on aquatic organisms. Herein, the effects on the feeding rate of Daphnia magna (D. magna) induced by psychotropic drugs CTP and MTP were investigated, which the possible mechanisms were analyzed with the oxidative stress and damage. Generally, the feeding rates of exposed D. magna under all concentrations of CTP and 1.03 mg/L of MTP were significantly decreased after exposure (p < 0.05 or p < 0.01). The inhibitory effect of CTP on the feeding rate of D. magna was time- and dose-dependent. The levels of reactive oxygen species (ROS) were particularly increased in D. magna after CTP and MTP exposure (p < 0.05 or p < 0.01). The level of antioxidant molecules glutathione S-transferase (GST) and the activity of scavenging enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) of D. magna were increased (p < 0.05 or p < 0.01). In consequence, the levels of malondialdehyde (MDA), protein carbonyl, and 8-hydroxydeoxyguanosine (8-OHdG) were increased (p < 0.05 or p < 0.01), which indicated oxidative damage caused by MTP and CTP, due to the imbalance of antioxidative stress system. These findings indicated that psychoactive drugs posed a high toxic threat to the aquatic organisms, and the aquatic environmental risks caused by using psychoactive drugs deserve more attention.

3.
Ecotoxicol Environ Saf ; 197: 110573, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278825

RESUMEN

Antibiotics had been paid more and more attention to their toxicity to non-target aquatic organisms in the aquatic environment. As azithromycin (AZI) was an important antibiotic pollutant in water, its toxicity to aquatic organisms had been investigated. In this study, the potential aquatic ecological risk of AZI was identified by assessing the toxicity on the feeding behavior and physiological function of Daphnia magna (D. magna) under the different exposure pathways (aqueous phase exposure vs. food phase exposure). For the food Chlorella pyrenoidosa (C. pyrenoidosa), AZI could inhibit the growth and nutrition accumulation with concentration- and time-response relationship. For D. magna, the feeding behavior was inhibited by AZI under the aqueous phase exposure pathway. However, the feeding behavior was inhibited firstly and then reversed into promotion in the low and medium concentration groups and was continually promoted in the high concentration group under the food phase exposure pathway. The accumulation of polysaccharides and total protein were decreased in D. magna n the high concentration group under the aqueous phase exposure pathway, while the accumulation of polysaccharides and crude fat were decreased in the high concentration group under the food phase exposure pathway. The activity of amylase (AMS) and trypsin in D. magna were decreased after exposure to AZI under the aqueous phase exposure pathway. On the other hand, the activity of AMS in the medium and high concentration groups was decreased under the food phase exposure pathway, but the activity of trypsin was decreased in the medium concentration group and increased in the high concentration group. The levels of ROS in D. magna were also measured and increased in both exposure pathways except in the low concentration group under the food phase exposure pathway, indicating the oxidative stress injury of D. magna. Our results showed that AZI could affect the digestive enzyme activities and oxidative stress-antioxidative system, ultimately leading to the change of D. magna's feeding behavior and nutrition accumulation. These results also provided a comprehensive perspective to evaluate the toxic effects of non-lethal dose antibiotics to non-target aquatic organisms via different exposure pathways.


Asunto(s)
Azitromicina/toxicidad , Daphnia/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Nutrientes/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Azitromicina/metabolismo , Chlorella/metabolismo , Daphnia/metabolismo , Daphnia/fisiología , Exposición Dietética/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...